

Generating EU-wide endogenous crop yield responses to nitrogen to predict the impact of environmental policies on farm-level cropping systems

Jeroen De Waele, Julia de Frutos Cachorro, Andreas Bral, David De Pue, Stefaan De Neve, Jeroen Buysse

Overall goal: predict how farmers will alter cropping systems upon environmental policy incentives

Specific aim: generating endogenous yield response curves to N, applicable to individual farms of EU FADN (Farm Accountancy Data Network)

➡ Yield response curves at NUTS-2 level

Simulations on HSMU level = Homogeneous Spatial Mapping Unit (CAPRI model) based i.a. on European Soil Database

Planting and harvest dates from JRC-MARS Crop Calendar Dataset

EU-Rotate_N

Weather data on a NUTS-2 level from the European Climate Assessment & Dataset

Target yields: maximum attainable yields = 90% FADN quantiles per NUTS-2

Yield response to N fertilizer

Mineral fertilizer = KNO₃: 0-240 kg N ha⁻¹

Organic fertilizer = cattle manure: 0-56000 kg ha⁻¹

Example: yield response curve for sugar beet in East Flanders (Belgium)

Remarks

- ☐ No single best fitted regression function
 - Yield functions most responsive to mineral N
- Overestimated response for grassland and potatoes in East-Flanders
- Underestimated response for wheat and potatoes in Mediterranean regions

Regression

Simulation results weighted by the HSMU contribution to the total NUTS-2 crop area

Linear function:

$$Yield = a + b * Nmin + c * Norg$$

Quadratic function:

Yield
=
$$a + b * Nmin + c * Norg + d * Nmin^2 + e * Norg^2$$

Quadratic function with interactions:

Yield
=
$$a + b * Nmin + c * Norg + d * Nmin^2 + e * Nmin * Norg + f * Norg^2$$

Effect of irrigation on yield response curves for winter wheat and potatoes in Calabria (Italy)

Thank you

Jeroen De Waele

Soil Management Department

Faculty of Bioscience Engineering

Ghent University

Belgium

jeroen.dewaele@ugent.be