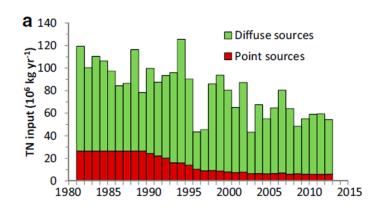
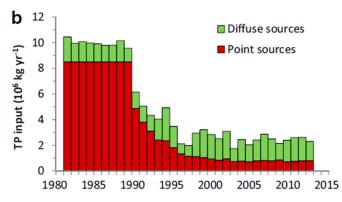
Map-based screening to achieve cost-effective spatially targeted WFD river basin action programmes

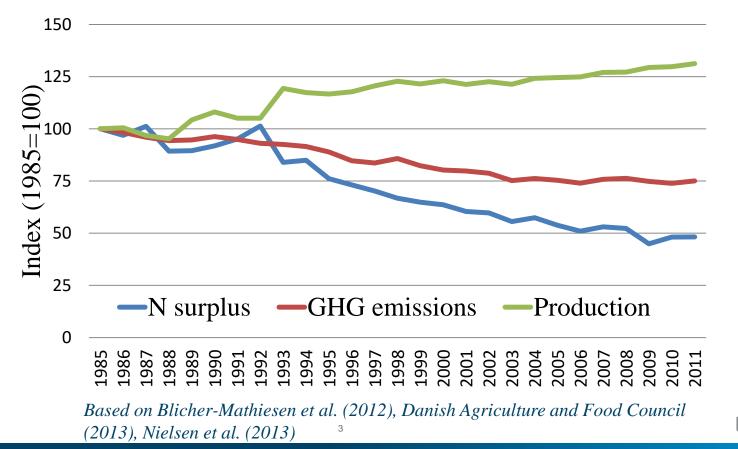
Michael Butts¹, Torsten V Jacobsen¹, Henrik G. Mueller¹, Bjarke S. Kaspersen¹


1 DHI, Agern Alle 5, DK 2970, Hoersholm, Denmark; mib@dhigroup.com



The Danish Case – a success story

N inputs to coastal waters


P inputs to coastal waters

Based on data from Riemann et al (2015)

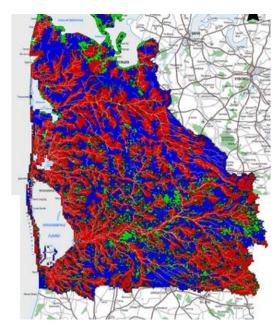
Decoupling environmental impacts

The challenge in Denmark - and Northwestern Europe

- Nutrient loads have been reduced during the past 30 years
- Ecosystems have not yet fully recovered and do not (yet) comply with EU WFD
- 2. generation water plans requires <u>significant additional nutrient load</u> <u>reductions</u>

- Economical losses due to lower crop yields and protein contents of cereals
- Denmark has been applying less fertilizers than other European countries

Commission for Agriculture and Environment, 2013 report on the way forward


- It is possible to both increase agricultural production value and protect the environment
- Vulnerable versus robust agricultural land
 <u>differentiation in use of measures is</u>
 <u>needed !</u>

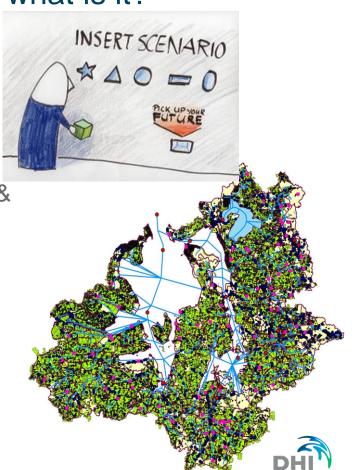

Political decision, implementation of targeted management (2018)

From general regulation to differentiated and cost-efficient water plans DHI

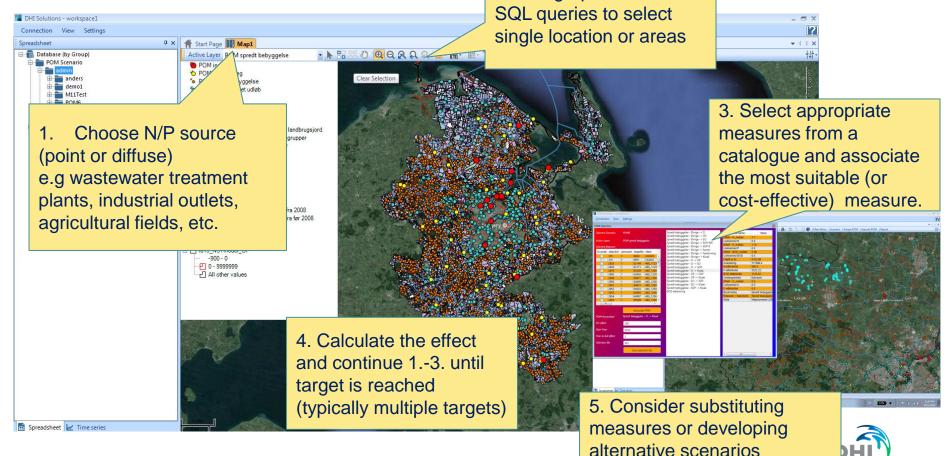
Differentiated application of measures

Unique pathway, N/P-retention & the environmental impact

0-100 % reduction 0-100 % cost-effectiveness


Programme of Measures (POM) tool – what is it?

A map-based screening and POM scenario tool

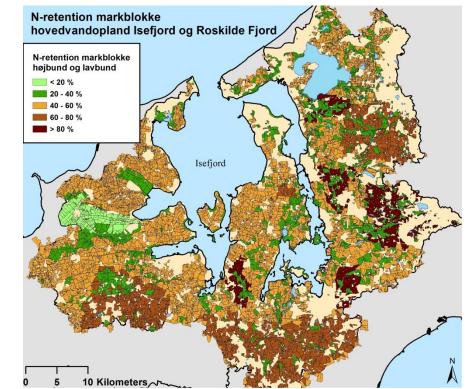

Simple calculation scheme for the accumulated effect of a set of individual measures within a catchment using the river network, subcatchments & GIS information

Provides the net effect and cost in any number of points within the catchment and downstream e.g at the outlet to a fjord

- No differential equations !
- Can be used independently or together with advanced catchment N/P models

POM tool

2. Use graphical tools or


Roskilde Fjord

Isefjord and Roskilde Fjord catchments features two fjords, 52 lakes and 682 km streams and 19 GW bodies.

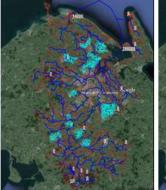
Reductions relative to baseline 2015: Isefjord : 281 t N/year Roskilde fjord : 348 t N/year

Potential for increasing cost-efficiency by targeting:

- Catch crops (60 %)
- Stream buffer strips
- Restored wetlands

- Adding CO2- eqv. to N and P load reduction measures
- Demonstrating effects of other measures, biogas plants

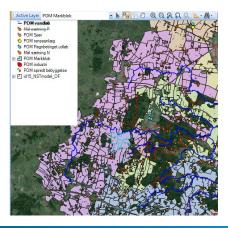
Bjarke Kaspersen


Odense River Basin POM analysis

Buffer strips

Catch crops

Wetlands


Energy crops

<u>Objective</u>: To set up a realistic and cost-efficient program of measures for Odense River basin reducing N-loads to the coast by 370 t/year and P-loads to lakes.

<u>Cost efficiency</u>: Minimize costs of measures (e.g Euro/kg N) and maximize environmental effects (lakes, coast)

<u>Targeted:</u> Demonstrate the benefit of adopting targeted, site specific managment measures as opposed to previous generalised pollution control rules

Selected key POM tool results, Odense

Measure type	Extent	Units	Costs kEuro/year	Marine load reduction (T N/year)
Late catch crops	2842	ha field blocks	130	54,5
Early catch crops	4697	ha field blocks	227	35,2
Energy crops	1218	ha field blocks	241	39,1
Fallow land	604	ha field blocks	408	21,9
Early sowing	8035	ha field blocks	107	37,5
Storm water detention	7770	m3 storage	108	0.1
Water treatment upgr.	16	np. households	13	0.1
Buffer strips	116	km stream	58	6,7
Restored wetlands	383	ha wetland	253	59,4
Mini-wetlands	67	ha wetland	1,783	134,0
Total			3,279	388,3

Ranking of measures by cost-efficiency

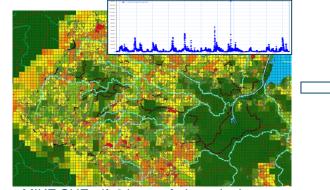
Replace lower ranking measures ?

Kilde type	Dosering [Enheder]	Enheds- effekt [kg/enhe d/år]	Effekt Ved kilde [kg/år]	Omk.effekt. ved kilde [kr/kg]	Reduktion Ved fjord 2021 [kg/ǎr]	Omk.effekt. Ved fjord 2021 [kr/kg]
Efterafgrøder (G2): Odense fjord - POM Markblok_Marker_Hedebaekke n EAfgr	322.57	28.50	9193	12.00	7618.57	14.48
Efterafgrøder (G2): Odense fjord - POM Markblok_Marker_HolmehaveB	117.39	28.50	3345	12.00	2317.30	17.33
aek_nedst_EAfgr Efterafgrøder (G2): Odense fjord - POM Markblok_Marker_SallingeLund e EAfgr	517.22	28.50	14741	12.00	10172.29	17.33
Randzoner 10 m (på hver side): Odense fjord - POM vandløb_RandzonerVandloeb_ Pilebaekken	6.30	96.00	605	17.72	604.56	17.72
Spredt bebyggelse - O -> Kloak : Odense fjord - POM spredt bebyggelse SB DallundSø O-						
Kloak Regnvand - infiltrationsbassin : Odense fjord - POM Regnbetinget	16.00	7.70	123	800.50	123.20	800.50
udløb_RBU_DallundSø_1	7.77	15.60	121	6706.98	99.45	8174.62

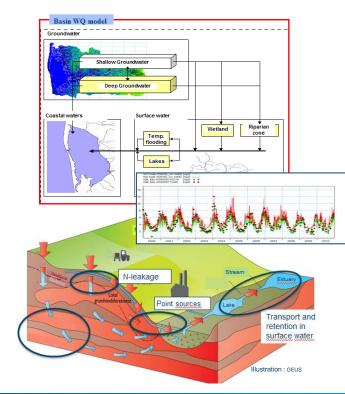
Water plan implementation costs reduced from 4,0 to 3,3 mill euro/year by targeting measures

Export to MIKE SHE – MIKE11 – EcoLab basin WQ model

Going from screening level POM analysis to full, integrated proces based WQ model Requires 1:1 correspondence of point and diffuse sources in POM tool and MIKE model


Diffuse sources

Diffuse POM measures Point sources


Point POM measures

MIKE SHE .dfs2 input of nitrate leakage

	Boundary Description	Boundary Type	Branch Name	Chainage	Chainage	Gate ID		Boundary ID	
250	Distributed Source	Inflow	Raevedamsaficebet	0	2126		Regn_42320720_8571		
251	Distributed Source	Inflow	Ryds Å	0	1168		Regn_42320720_8574		
252	Distributed Source	Inflow	Holmehave Baek	8812.36	11169.11		Regn_42320720_13199		
253	Distributed Source	Inflow	SALLINGE_AA	20631.86	23200		Regn_42320721_8623		- 11
254	Distributed Source	Inflow	Odense_AA_os	8215.49	14190.35		Regn_42320721_13185		
255	Distributed Source	Inflow	OdenseA_os_5	0	750.93		Regn_42320722_8561		۰.
	-								
VIn	clude HD calculation clude AD boundaries 0 - RR		RAIN_P5_42320721_8623.d 3.0 1 → TN (mp16er).	-	×				
VIn	Data Type TS Type	File / Value Regrivand/RAIN_PS	3.0	ter] Net] ()	*				
VIn	Data Type TS Type Discharge: TS Fil Component Nu Da	Regrivand\RAIN_PS	3.0	ter] Net] ()	×		2000 - 09		
VIn	Data Type TS Type Discharge: TS Fil Component Nu Da	Regrivand\RAIN_PS ta Type TS Typ enterio TS File	3.0	iter) Net) ()	**** **				
VIn	Data Type TS Type Discharge: TS Fil Component Nu Da	Regrivand\RAIN_PS	3.0	Her] Her] 90 - 99 54-74	×				

MIKE11.dfs0 input (.bnd11)

Concluding Remarks

- The PoM's assessment tool can support the development of spatially targeted and cost-effective action programmes at the river basin level
- Strengths:
 - Easy to use
 - Based on the data for river basin plans
 - Estimates the effect of measures on environmental targets
 - Contains cost-effectiveness for the analysis of alterative measures
 - Web user-interface & professional software package
 - Covers N, P, & CO₂
- Provides digital, transparent and accessible version of programme of measures in the river basin plans well-suited for engaging stakeholders and decision-makers

For more information

mib@dhigroup.com OR tvj@dhigroup.com

Stoltze Kaspersen, B., T.V. Jacobsen, M.B. Butts, N.H. Jensen; E. Boegh, L.P. Seaby, H.G. Müller; T. Kjaer (2016) Using a map-based assessment tool for the development of cost-effective WFD river basin action programmes in a changing climate. Journal of Environmental Management 08/2016; 178:70-82. DOI:10.1016/j.jenvman.2016.04.043.

Stoltze Kaspersen, B., T.V. Jacobsen, M.B. Butts, E. Boegh, H.G. Müller, M. Stutter, A.M. Fredenslund, T. Kjaer (2016) Integrating climate change mitigation into river basin management planning for the Water Framework Directive - A Danish case. Environmental Science & Policy 01/2016; 55:141-150. DOI:10.1016/j.envsci.2015.10.002

Stoltze Kaspersen, B., T.B. Christensen, A.M. Fredenslund, H.B. Møller, M.B. Butts, N.H. Jensen, T. Kjaer (2016) Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept. Science of The Total Environment 01/2016; 541:1124-1131. DOI:10.1016/j.scitotenv.2015.10.015

