The nitrogen footprint: environmentally relevant?

Rasmus Einarsson and Christel Cederberg rasmus.einarsson@chalmers.se

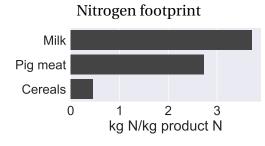
27 June 2017

ション ふゆ マ キャ キョン ト きょうめんし

The N footprint links pollution to consumption

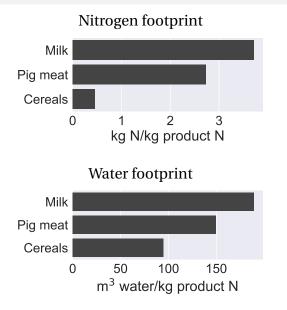
"the total amount of N_r released to the environment as a result of an entity's resource consumption"

Leach et al. (2012); emphasis added

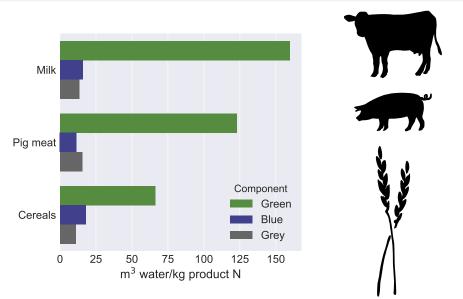

Environmental relevance: Equivalence of units

"When aggregating data, having common units is necessary, but not sufficient; **environmental equivalence** is needed. "When aggregating data, having common units is necessary, but not sufficient; **environmental equivalence** is needed.

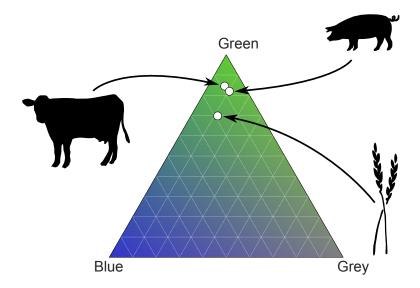
To illustrate, ... emissions of different greenhouse gases [must be weighted with factors] describing the relative global warming potentials."


Ridoutt et al. (2015); emphasis added

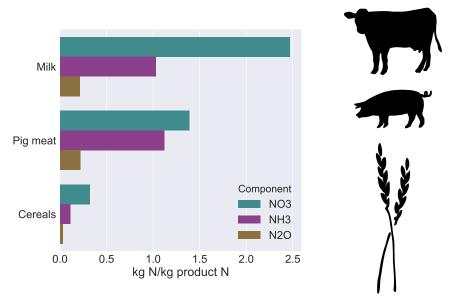
A sum of physical flows related to a product



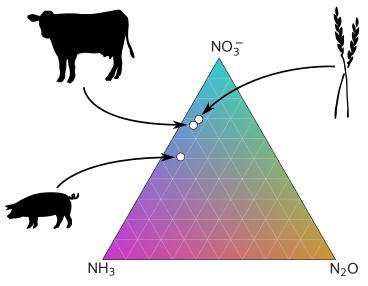
A sum of physical flows related to a product



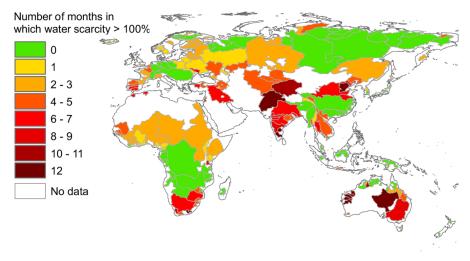
Water footprint consists of three components


Based on Mekonnen and Hoekstra (2010) and Mekonnen and Hoekstra (2012)

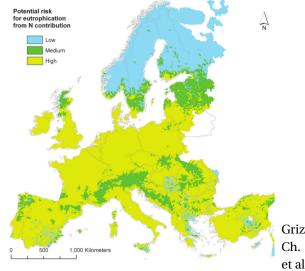
Each product has its own "water fingerprint"


Based on Mekonnen and Hoekstra (2010) and Mekonnen and Hoekstra (2012)

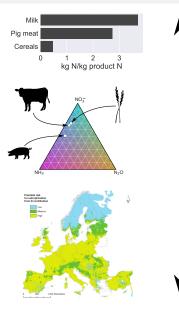
We can split up the N footprint, too


Based on Leip et al. (2014) in Westhoek et al. (2015)

The "nitrogen fingerprint" of products

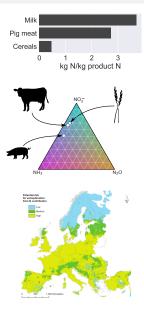

Based on Leip et al. (2014) in Westhoek et al. (2015)

Damages are not proportional to footprints Case in point: Water scarcity


Part of figure from Hoekstra et al. (2012)

Damages are not proportional to footprints Case in point: Surface water eutrophication

Grizzetti et al., Ch. 17 in Sutton et al. (2011)


A tough trade-off: Simplicity vs. relevance

One-dimensional Concrete Certain Objective Less relevant

Multi-dimensional Abstract Uncertain Subjective More relevant

A tough trade-off: Simplicity vs. relevance

Conclusions and questions:

- The water footprint is 15 years ahead of the N footprint. Let's learn from that!
- Strict environmental relevance is not possible, but could we take a step in that direction?
- Who should use the N footprint? For what purpose?

Bibliography I

- Hoekstra, A. Y., M. M. Mekonnen, A. K. Chapagain, R. E. Mathews, and B. D. Richter (2012). "Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability". *PLOS ONE* 7.2, e32688. DOI: 10.1371/journal.pone.0032688.
 - Leach, A. M. et al. (2012). "A Nitrogen Footprint Model to Help Consumers Understand Their Role in Nitrogen Losses to the Environment". *Environmental Development* 1.1, pp. 40–66. DOI: 10.1016/j.envdev.2011.12.005.
 - Leip, A., F. Weiss, J. P. Lesschen, and H. Westhoek (2014). "The Nitrogen Footprint of Food Products in the European Union". *The Journal of Agricultural Science* 152, S20–S33. DOI: 10.1017/S0021859613000786.
 - Mekonnen, M. M. and A. Y. Hoekstra (2010). *The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products.* Info:Eu-Repo/Semantics/Report 47. Delft, the Netherlands: UNESCO-IHE Institute for Water Education.
 - (2012). "A Global Assessment of the Water Footprint of Farm Animal Products". *Ecosystems* 15.3, pp. 401–415. DOI: 10.1007/s10021-011-9517-8.
 - Ridoutt, B. et al. (2015). "Making Sense of the Minefield of Footprint Indicators". *Environmental Science & Technology* 49.5, pp. 2601–2603. DOI: 10.1021/acs.est.5b00163.

- Sutton, M. A. et al., eds. (2011). *The European Nitrogen Assessment: Sources, Effects and Policy Perspectives*. Cambridge: Cambridge University Press.
- Westhoek, H. et al. (2015). Nitrogen on the Table: The Influence of Food Choices on Nitrogen Emissions and the European Environment. European Nitrogen Assessment Special Report